SBE-β-CD (captisol)

This product is for research use only, not for human use. We do not sell to patients.

SBE-β-CD (captisol)
For small sizes, please check our retail website as below: www.invivochem.com
Size Price Stock
50g$450In Stock
100g$650In Stock

Cat #: V3041 CAS #: 182410-00-0 Purity ≥ 98%

Description: SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs. The sodium sulfonate salt of it is separated from the lipophilic cavity by a butyl ether spacer moiety, namely the sulfobutylether (SBE). SBE-β-CD can form non-covalent inclusion complexes with drug molecules, by so doing, it can improve drug stability, solubility and safety, reduce toxicity, cover up bad smell, and control drug release rate. As an excipient, SBE-β-CD has been used in various formulation including injection, oral, nasal and eye medication. Modification of the structure by charged functional groups can improve the binding affinity of cyclodextrins for oppositely charged guests, therefore it has a specific affinity for drugs containing nitrogen atoms.

Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products

Product Promise

Promise
Molecular Weight (MW)1134.98
Molecular FormulaC42H70-nO35.nNa.n(C4H8O3S)
CAS No.182410-00-0
Storage-20℃ for 3 years in powder formrr
-80℃ for 2 years in solvent
Solubility In VitroDMSO: 6 mg/mLrr
Water: >100 mg/mLrr
Ethanol: <1 mg/mL
SynonymsSodium sulfobutylether β-cyclodextrin; SBE-β CD; SBE-β-CD; SBE β-CD; SBE β CD; SBE-beta-CD; Sulfobutylether beta-cyclodextrin; Captisol; beta-cyclodextrin sulfobutyl ether sodium salts Chemical Name: beta-cyclodextrin sulfobutyl ether sodium salts
ProtocolIn VitroIn vitro activity: SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs.. The sodium sulfonate salt of it is separated from the lipophilic cavity by a butyl ether spacer moiety, namely the sulfobutylether (SBE). SBE-β-CD can form non-covalent inclusion complexes with drug molecules, by so doing, it can improve drug stability, solubility and safety, reduce toxicity, cover up bad smell, and control drug release rate. As an excipient, SBE-β-CD has been used in various formulation including injection, oral, nasal and eye medication. Modification of the structure by charged functional groups can improve the binding affinity of cyclodextrins for oppositely charged guests, therefore it has a specific affinity for drugs containing nitrogen atoms. Kinase Assay: SBE-β-CD is a chemically modified β-CD that is a cyclic hydrophilic oligosaccharide which is negatively charged in aqueous media. β-CD functioned is a solubilizer only at low concentrations, whereas SBE7-β-CD exhibits strong solubilizing effects over a wide concentration range.
In VivoSBE-β-CD is a derivatized form of β-cyclodextrin that has been developed as a safe and effective solubilizing agent for drugs being administered by parenteral and other routes (including oral). SBE-β-CD is a cyclic carbohydrate comprised of seven glucose molecules; the resulting truncated cone-like structure being further derivatized with an average of seven sulfobutyl ether groups. The calorimetric data for the Compound 1/SBE-β-CD complex indicates an extremely strong interaction, with an association constant of 2.3±(0.2)×106M-1 at 25°C and 1.6±(0.2)×106M-1 at 37°C. SBE-β-CD alone evokes a mild cardio-depressant effect independent of cocaine treatment (p=0.0001 compared to baseline) but attenuates further cocaine-induced decreases in RPP, dP/dtmax, and dP/dtmaxabs at high cocaine concentrations. No significant effect is seen on line pressure SBE-β-CD alleviates the most pronounced cardiac depression for RPP, dP/dtmax, and dP/dtmaxabs. This differential effect of SBE-β-CD at low and high concentrations produces an interaction effect in the two-way ANOVA for RPP (p<0.0001), dP/dtmax (p=0.0001), and dP/dtmaxabs (p=0.0015), and prevents any overall treatment effect. Infusing SBE-β-CD also attenuates the cardiac depression associated with cocaethylene toxicity for RPP and dP/dtmax. No differences are observed between ethanol-treated controls and cocaethylene plus SBE-β-CD groups.
Animal modelRats
These protocols are for reference only. InvivoChem does not independently validate these methods.
Preparing Stock Solutions
Solvent volume to be added Mass (the weight of a compound)
Mother liquor concentration 1mg5mg10mg20mg
1mM0.8811 mL4.4054 mL8.8107 mL17.6215 mL
5mM0.1762 mL0.8811 mL1.7621 mL3.5243 mL
10mM0.0881 mL0.4405 mL0.8811 mL1.7621 mL
20mM0.0441 mL0.2203 mL0.4405 mL0.8811 mL
Quality Control Documentation
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start) × Volume(start) = Concentration(final) × Volume(final)

This equation is commonly abbreviated as: C1 V1 = C2 V2

Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg Average weight of animals g Dosing volume per animal µL Number of animals
Step Two: Enter the in vivo formulation
%DMSO + % + %Tween 80 + %ddH2O

Calculation Results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in µL DMSO(Master liquid concentration mg/mL) ,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation: Take µL DMSO master liquid, next add µL PEG300, mix and clarify, next add µL Tween 80,mix and clarify, next add µL ddH2O,mix and clarify.
Note:
  • (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
  • (2) Be sure to add the solvent(s) in order.