This product is for research use only, not for human use. We do not sell to patients.
Size | Price | Stock |
---|---|---|
50g | $450 | In Stock |
100g | $650 | In Stock |
Cat #: V3041 CAS #: 182410-00-0 Purity ≥ 98%
Description: SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs. The sodium sulfonate salt of it is separated from the lipophilic cavity by a butyl ether spacer moiety, namely the sulfobutylether (SBE). SBE-β-CD can form non-covalent inclusion complexes with drug molecules, by so doing, it can improve drug stability, solubility and safety, reduce toxicity, cover up bad smell, and control drug release rate. As an excipient, SBE-β-CD has been used in various formulation including injection, oral, nasal and eye medication. Modification of the structure by charged functional groups can improve the binding affinity of cyclodextrins for oppositely charged guests, therefore it has a specific affinity for drugs containing nitrogen atoms.
Publications Citing InvivoChem Products
Product Promise
- Physicochemical and Storage Information
- Protocol
- Related Biological Data
- Stock Solution Preparation
- Quality Control Documentation
Molecular Weight (MW) | 1134.98 |
---|---|
Molecular Formula | C42H70-nO35.nNa.n(C4H8O3S) |
CAS No. | 182410-00-0 |
Storage | -20℃ for 3 years in powder formrr |
-80℃ for 2 years in solvent | |
Solubility In Vitro | DMSO: 6 mg/mLrr |
Water: >100 mg/mLrr | |
Ethanol: <1 mg/mL | |
Synonyms | Sodium sulfobutylether β-cyclodextrin; SBE-β CD; SBE-β-CD; SBE β-CD; SBE β CD; SBE-beta-CD; Sulfobutylether beta-cyclodextrin; Captisol; beta-cyclodextrin sulfobutyl ether sodium salts Chemical Name: beta-cyclodextrin sulfobutyl ether sodium salts |
Protocol | In Vitro | In vitro activity: SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs.. The sodium sulfonate salt of it is separated from the lipophilic cavity by a butyl ether spacer moiety, namely the sulfobutylether (SBE). SBE-β-CD can form non-covalent inclusion complexes with drug molecules, by so doing, it can improve drug stability, solubility and safety, reduce toxicity, cover up bad smell, and control drug release rate. As an excipient, SBE-β-CD has been used in various formulation including injection, oral, nasal and eye medication. Modification of the structure by charged functional groups can improve the binding affinity of cyclodextrins for oppositely charged guests, therefore it has a specific affinity for drugs containing nitrogen atoms. Kinase Assay: SBE-β-CD is a chemically modified β-CD that is a cyclic hydrophilic oligosaccharide which is negatively charged in aqueous media. β-CD functioned is a solubilizer only at low concentrations, whereas SBE7-β-CD exhibits strong solubilizing effects over a wide concentration range. |
---|---|---|
In Vivo | SBE-β-CD is a derivatized form of β-cyclodextrin that has been developed as a safe and effective solubilizing agent for drugs being administered by parenteral and other routes (including oral). SBE-β-CD is a cyclic carbohydrate comprised of seven glucose molecules; the resulting truncated cone-like structure being further derivatized with an average of seven sulfobutyl ether groups. The calorimetric data for the Compound 1/SBE-β-CD complex indicates an extremely strong interaction, with an association constant of 2.3±(0.2)×106M-1 at 25°C and 1.6±(0.2)×106M-1 at 37°C. SBE-β-CD alone evokes a mild cardio-depressant effect independent of cocaine treatment (p=0.0001 compared to baseline) but attenuates further cocaine-induced decreases in RPP, dP/dtmax, and dP/dtmaxabs at high cocaine concentrations. No significant effect is seen on line pressure SBE-β-CD alleviates the most pronounced cardiac depression for RPP, dP/dtmax, and dP/dtmaxabs. This differential effect of SBE-β-CD at low and high concentrations produces an interaction effect in the two-way ANOVA for RPP (p<0.0001), dP/dtmax (p=0.0001), and dP/dtmaxabs (p=0.0015), and prevents any overall treatment effect. Infusing SBE-β-CD also attenuates the cardiac depression associated with cocaethylene toxicity for RPP and dP/dtmax. No differences are observed between ethanol-treated controls and cocaethylene plus SBE-β-CD groups. | |
Animal model | Rats |
Solvent volume to be added | Mass (the weight of a compound) | |||
---|---|---|---|---|
Mother liquor concentration | 1mg | 5mg | 10mg | 20mg |
1mM | 0.8811 mL | 4.4054 mL | 8.8107 mL | 17.6215 mL |
5mM | 0.1762 mL | 0.8811 mL | 1.7621 mL | 3.5243 mL |
10mM | 0.0881 mL | 0.4405 mL | 0.8811 mL | 1.7621 mL |
20mM | 0.0441 mL | 0.2203 mL | 0.4405 mL | 0.8811 mL |
This equation is commonly abbreviated as: C1 V1 = C2 V2
- (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
- (2) Be sure to add the solvent(s) in order.