MQAE

This product is for research use only, not for human use. We do not sell to patients.

MQAE
For small sizes, please check our retail website as below: www.invivochem.com
Size Price Stock
10mg$503-6 Days
50mg$803-6 Days
100mg$1203-6 Days
250mg$1903-6 Days
500mg$2903-6 Days
1g$4703-6 Days

Cat #: V0100 CAS #: 162558-52-3 Purity ≥ 98%

Description: MQAE (N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide) is an analog of 6-methoxyquinolinium. It is a novel fluorescent indicator/dye for detection of intracellular Cl-. MQAE detects the ion when quenched via collision with chloride. It is more frequently used for chloride measurement as it is more sensitive and selective than 36Cl and microelectrode-based methods. MQAE is a useful fluorescence dye for noninvasive measurements of the intracellular Cl-.

Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products

Product Promise

Promise
Molecular Weight (MW)326.19
Molecular FormulaC14H16BrNO3
CAS No.162558-52-3
Storage-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility In VitroDMSO: >30 mg/mL
Water: N/A
Ethanol: N/A
SMILES CodeCOC1=CC2=CC=C[N+](CC(OCC)=O)=C2C=C1.[Br-]
SynonymsN-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide; MQAE;
ProtocolIn VitroIn vitro activity: MQAE (N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide) is a novel fluorescent indicator/dye that is quenched via collision with chloride, and is more sensitive and selective than 36Cl and microelectrode-based methods for chloride measurement in cells. MQAE was used to measure intracellular chloride concentration ([Cl-]i) in primary cultures of rat aortic smooth muscle cells (VSMC). The hydrolytic and fluorescent properties of the dye were characterized. The intracellular Stern-Volmer constant was calculated to be 25 M-1. Cl- efflux curves were characteristic of saturation-type kinetics, with an apparent Michaelis-Menten constant value of 11 +/- 4.8 (SD) mM, a maximum velocity of 0.038 +/- 0.021 mM/s, and a half time (t1/2) of 9.0 +/- 3.7 min. Kinase Assay: This protocol describes a technique for high-resolution chloride imaging of living cells using a quinoline-based chloride (Cl(-)) indicator dye, MQAE (N-[6-methoxyquinolyl] acetoethyl ester). Bath-applied to acute brain slices, MQAE provides high-quality labeling of neuronal cells and their processes. In living anesthetized mice, cortical cells are labeled using the multicell bolus loading procedure. In combination with two-photon microscopy, this procedure enables in vivo visualization of cell bodies of neurons and astrocytes as well as some astrocytic processes and allows one to monitor changes in the intracellular chloride concentration in dozens of individual cells. Cell Assay: The intracellular Stern-Volmer constant was calculated to be 25 M-1. Cl- efflux curves were characteristic of saturation-type kinetics, with an apparent Michaelis-Menten constant value of 11 +/- 4.8 (SD) mM, a maximum velocity of 0.038 +/- 0.021 mM/s, and a half time (t1/2) of 9.0 +/- 3.7 min. The average efflux rate in the first 10 min (0.023 +/- 0.004 mM/s) was reduced in the presence of either 130 microM 4,4'-diisothiocyanato-dihydrostilbene-2,2'-disulfonic acid (H2DIDS) (0.014 +/- 0.006, P = 0.02) or 40 microM furosemide (0.017 +/- 0.004, P = 0.04). Restoration of physiological extracellular chloride concentration ([Cl-]o) after zero Cl- resulted in net Cl- influx with a t1/2 of 3.6 +/- 1.0 min. The initial Cl- influx rate was reduced after exposure to furosemide, from 0.069 +/- 0.006 to 0.046 +/- 0.008 mM/s, P < 0.002, and was reduced after exposure to H2DIDS from 0.102 +/- 0.013 to 0.033 +/- 0.003 mM/s, P < 0.001. Furosemide reduced the steady-state [Cl-]i from 31.6 +/- 3.2 to 26.1 +/- 2.4 mM, P < 0.01, whereas H2DIDS had little effect on [Cl-]i. Our results demonstrate that MQAE can be used to measure [Cl-]i in primary cultures of VSMC.
In VivoIn living anesthetized mice, cortical cells are labeled using the multicell bolus loading procedure. In combination with two-photon microscopy, this procedure enables in vivo visualization of cell bodies of neurons and astrocytes as well as some astrocytic processes and allows one to monitor changes in the intracellular chloride concentration in dozens of individual cells.
Animal modelMice
These protocols are for reference only. InvivoChem does not independently validate these methods.
Preparing Stock Solutions
Solvent volume to be added Mass (the weight of a compound)
Mother liquor concentration 1mg5mg10mg20mg
1mM3.0657 mL15.3285 mL30.6570 mL61.3140 mL
5mM0.6131 mL3.0657 mL6.1314 mL12.2628 mL
10mM0.3066 mL1.5328 mL3.0657 mL6.1314 mL
20mM0.1533 mL0.7664 mL1.5328 mL3.0657 mL
Quality Control Documentation
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start) × Volume(start) = Concentration(final) × Volume(final)

This equation is commonly abbreviated as: C1 V1 = C2 V2

Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg Average weight of animals g Dosing volume per animal µL Number of animals
Step Two: Enter the in vivo formulation
%DMSO + % + %Tween 80 + %ddH2O

Calculation Results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in µL DMSO(Master liquid concentration mg/mL) ,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation: Take µL DMSO master liquid, next add µL PEG300, mix and clarify, next add µL Tween 80,mix and clarify, next add µL ddH2O,mix and clarify.
Note:
  • (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
  • (2) Be sure to add the solvent(s) in order.