CUDC-101

This product is for research use only, not for human use. We do not sell to patients.

CUDC-101
For small sizes, please check our retail website as below: www.invivochem.com
Size Price Stock
5mg$65In Stock
10mg$90In Stock
25mg$150In Stock
50mg$210In Stock
100mg$380In Stock
250mg$750In Stock
500mg$1150In Stock

Cat #: V0277 CAS #: 1012054-59-9 Purity ≥ 98%

Description: CUDC-101 is a novel, potent and multi-targeted histone deacetylase (HDAC) inhibitor with potential anticancer activity. It also inhibits EGFR and HER2 with IC50s of 4.4 nM, 2.4 nM, and 15.7 nM.

Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products

Product Promise

Promise
Molecular Weight (MW)434.49
Molecular FormulaC24H26N4O4
CAS No.1012054-59-9
Storage-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility In VitroDMSO: 20 mg/mL (46.0 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility In Vivo15% Captisol: 30 mg/mL
SynonymsCUDC-101; CUDC 101; CUDC101 Chemical Name: 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide SMILES Code: O=C(NO)CCCCCCOC1=CC2=C(NC3=CC=CC(C#C)=C3)N=CN=C2C=C1OC
ProtocolIn VitroIn vitro activity: Specific for class I and class II HDACs, CUDC-101 does not inhibit class III Sir-type HDACs. CUDC-101 displays weak activity against other protein kinases including KDR/VEGFR2, Lyn, Lck, Abl-1, FGFR-2, Flt-3, and Ret with IC50 of 0.85 μM, 0.84 μM, 5.91 μM, 2.89 μM, 3.43 μM, 1.5 μM, abd 3.2 μM, respectively. CUDC-101 displays broad antiproliferative activity in many human cancer cell types with IC50 of 0.04-0.80 μM, exhibiting a higher potency than erlotinib, lapatinib, and combinations of vorinostat with either erlotinib or lapatinib in most cases. CUDC-101 potently inhibits lapatinib- and erlotinib-resistant cancer cell lines. CUDC-101 inhibits the erlotinib-resistant EGFR mutant T790M although its effects are incomplete with an Amax of ~60% of peak enzyme activity after inhibition. CUDC-101 treatment increases the acetylation of histone H3 and H4, as well as the acetylation of non-histone substrates of HDAC such as p53 and α-tubulin, in a dose-dependant manner in various cancer cell lines. CUDC-101 also suppresses HER3 expression, Met amplification, and AKT reactivation in tumor cells. Kinase Assay: The activities of Class I and II HDACs are assessed using the Biomol Color de Lys system. Briefly, HeLa cell nuclear extracts are used as a source of HDACs. Different concentrations of CUDC-101 are added to HeLa cell nuclear extracts in the presence of a colorimetric artificial substrate. Developer is added at the end of the assay and enzyme activity is measured in the Wallac Victor II 1420 microplate reader at 405 nM. EGFR and HER2 kinase activity are measured using HTScan EGF receptor and HER2 kinase assay kits. Briefly, the GST-EGFR fusion protein is incubated with synthetic biotinylated peptide substrate and varying concentrations of CUDC-101 in the presence of 400 mM ATP. Phosphorylated substrate is captured with strapavidin-coated 96-well plates. The level of phosphorylation is monitored by antiphospho-tyrosine- and europium-labeled secondary antibodies. The enhancement solution is added at the end of the assay and enzyme activity is measured in the Wallac Victor II 1420 microplate reader at 615 nM. Cell Assay: Cancer cell lines (HCC827, H358, H460, HepG2, Hep3B2, Sk-Hep-1, Capan1, BxPc3, MCF-7, MDA-MB-231, and Sk-Br-3) are plated at 5000 to 10000 cells per well in 96-well flatbottomed plates with varying concentrations of CUDC-101. The cells are incubated with CUDC-101 for 72 hours in the presence of 0.5% of fetal bovine serum. Growth inhibition is assessed by an adenosine triphosphate (ATP) content assay using the Perkin-Elmer ATPlite kit. Apoptosis is routinely assessed by measuring the activities of Caspase-3 and -7 using Apo-ONE Homogeneous Assay Kit.
In VivoAdministration of CUDC-101 at 120 mg/kg/day induces tumor regression in the Hep-G2 liver cancer model, which is more efficacious than that of erlotinib at its maximum tolerated dose (25 mg/kg/day) and vorinostat at an equimolar concentration dose (72 mg/kg/day). CUDC-101 inhibits the growth of erlotinib-sensitive H358 NSCLC xenografts in a dose-dependent manner. CUDC-101 also shows potent inhibition of tumor growth in the erlotinib-resistant A549 NSCLC xenograft model. CUDC-101 produces significant tumor regression in the lapatinib-resistant, HER2-negative, EGFR-overexpressing MDA-MB-468 breast cancer model and the EGFR-overexpressing CAL-27 head and neck squamous cell carcinoma (HNSCC) model. Additionally, CUDC-101 inhibits tumor growth in the K-ras mutant HCT116 colorectal and EGFR/HER2 (neu)-expressing HPAC pancreatic cancer models.
Animal modelFemale athymic mice (nude nu/nu CD-1) inoculated with Hep-G2, H358, A549, MDA-MB468, HCT116, CAL-27, HepG2, or HPAC
These protocols are for reference only. InvivoChem does not independently validate these methods.
Preparing Stock Solutions
Solvent volume to be added Mass (the weight of a compound)
Mother liquor concentration 1mg5mg10mg20mg
1mM2.3015 mL11.5077 mL23.0155 mL46.0310 mL
5mM0.4603 mL2.3015 mL4.6031 mL9.2062 mL
10mM0.2302 mL1.1508 mL2.3015 mL4.6031 mL
20mM0.1151 mL0.5754 mL1.1508 mL2.3015 mL
Quality Control Documentation
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start) × Volume(start) = Concentration(final) × Volume(final)

This equation is commonly abbreviated as: C1 V1 = C2 V2

Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg Average weight of animals g Dosing volume per animal µL Number of animals
Step Two: Enter the in vivo formulation
%DMSO + % + %Tween 80 + %ddH2O

Calculation Results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in µL DMSO(Master liquid concentration mg/mL) ,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation: Take µL DMSO master liquid, next add µL PEG300, mix and clarify, next add µL Tween 80,mix and clarify, next add µL ddH2O,mix and clarify.
Note:
  • (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
  • (2) Be sure to add the solvent(s) in order.