CHIR-090

This product is for research use only, not for human use. We do not sell to patients.

CHIR-090
For small sizes, please check our retail website as below: www.invivochem.com
Size Price Stock
250mg$1280Check With Us
500mg$1650Check With Us
1g$2475Check With Us

Cat #: V2966 CAS #: 728865-23-4 Purity ≥ 98%

Description: CHIR-090 (CHIR090), a novel N-aroyl-l-threonine hydroxamic acid and antibiotic, is a highly potent, slow, and tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus. LpxC is a deacetylase involved in the biosynthesis of LPS lipid A. CHIR-090 has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound.

References: Barb AW, et al. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry. 2007 Mar 27;46(12):3793-802.

Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products

Product Promise

Promise
Molecular Weight (MW)437.49
Molecular FormulaC24H27N3O5
CAS No.728865-23-4
Storage-20℃ for 3 years in powder formr
-80℃ for 2 years in solvent
Solubility In VitroDMSO: ≥ 30 mg/mLr
Water: <1 mg/mLr
Ethanol: <1 mg/mL
Solubility In VivoO=C(N[C@@H]([C@H](O)C)C(NO)=O)C1=CC=C(C#CC2=CC=C(CN3CCOCC3)C=C2)C=C1
SMILES CodeO=C(N[C@@H]([C@H](O)C)C(NO)=O)C1=CC=C(C#CC2=CC=C(CN3CCOCC3)C=C2)C=C1
SynonymsCHIR090; CHIR 090; CHIR-090
ProtocolIn VitroIn vitro activity: CHIR-090, a novel N-aroyl-l-threonine hydroxamic acid, is a highly potent, slow, tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus, and it has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. Kinase Assay: Disk diffusion is conducted, except that 10 μg of each antibiotic compound is used per filter. Growth in liquid medium in the presence of CHIR-090 is evaluated as follows: cells from overnight cultures are inoculated into 50 mL portions of LB broth at an A600 of 0.02 and grown with shaking at 30°C. When the A600 reaches 0.15, parallel cultures are treated with either 6 μL of 500 μg/mL CHIR-090 in DMSO or 6 μL of DMSO. To assess cumulative growth, cultures are maintained in log phase growth by 10-fold dilution into pre-warmed medium, containing the same concentrations of DMSO or DMSO/CHIR-090, whenever the A600 reaches 0.4. The minimal inhibitory concentration is defined as the lowest antibiotic concentration at which no measurable bacterial growth is observed in LB medium containing 1% DMSO (v/v), when inoculated at a starting density of A600=0.01. Cultures are incubated with shaking for 24 h at 30°C in the presence of CHIR-090. Experiments are performed in triplicate Cell Assay: CHIR-090 at low nM levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including Pseudomonas aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki=340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. An E. coli construct in which the chromosomal lpxC gene is replaced by R. leguminosarum lpxC is resistant to CHIR-090 up to 100 μg/mL, or 400 times above the minimal inhibitory concentration for wild-type E. coli. CHIR-090, a very potent, slow, tight-binding inhibitor of Aquifex aeolicus LpxC, the sequence of which is 31 % identical toE. coli LpxC. CHIR-090 has remarkable antibiotic activity against E. coli and P. aeruginosa, comparable to ciprofloxacin, as judged by disk diffusion assays
In VivoCHIR-090 is a potent antibiotic against E. coli and inhibits E. coli LpxC activity in vitro in the low nM range. E. coli W3110 colonies resistant to 1 μg/mL CHIR-090 are not observed without prior chemical mutagenesis. A strain of E. coli W3110 is able to grow on LB agar plates containing 1 to 10 μg/mL CHIR-090, which is 4 to 40 times above the MIC of 0.25 μg/mL under our conditions for wild-type E. coli W3110.
Animal modelNA
Dosages 1 to 10 μg/mL
These protocols are for reference only. InvivoChem does not independently validate these methods.
Preparing Stock Solutions
Solvent volume to be added Mass (the weight of a compound)
Mother liquor concentration 1mg5mg10mg20mg
1mM2.2858 mL11.4288 mL22.8577 mL45.7153 mL
5mM0.4572 mL2.2858 mL4.5715 mL9.1431 mL
10mM0.2286 mL1.1429 mL2.2858 mL4.5715 mL
20mM0.1143 mL0.5714 mL1.1429 mL2.2858 mL
Quality Control Documentation
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start) × Volume(start) = Concentration(final) × Volume(final)

This equation is commonly abbreviated as: C1 V1 = C2 V2

Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg Average weight of animals g Dosing volume per animal µL Number of animals
Step Two: Enter the in vivo formulation
%DMSO + % + %Tween 80 + %ddH2O

Calculation Results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in µL DMSO(Master liquid concentration mg/mL) ,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation: Take µL DMSO master liquid, next add µL PEG300, mix and clarify, next add µL Tween 80,mix and clarify, next add µL ddH2O,mix and clarify.
Note:
  • (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
  • (2) Be sure to add the solvent(s) in order.