BAY 87-2243
This product is for research use only, not for human use. We do not sell to patients.
For small sizes, please check our retail website as below: www.invivochem.com
Size | Price | Stock |
---|---|---|
250mg | $850 | Check With Us |
500mg | $1450 | Check With Us |
1g | $2175 | Check With Us |
Cat #: V0296 CAS #: 1227158-85-1 Purity ≥ 98%
Description: BAY 87-2243 (BAY-87-2243) is a selective hypoxia-inducible factor-1 (HIF-1) inhibitor with potential anticancer activity.
Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products
Product Promise
- Physicochemical and Storage Information
- Protocol
- Related Biological Data
- Stock Solution Preparation
- Quality Control Documentation
Molecular Weight (MW) | 525.53 |
---|---|
Molecular Formula | C26H26F3N7O2 |
CAS No. | 1227158-85-1 |
SMILES Code | FC(F)(F)OC1=CC=C(C2=NOC(C3=NN(CC4=CC(N5CCN(C6CC6)CC5)=NC=C4)C(C)=C3)=N2)C=C1 |
Synonyms | BAY 872243; BAY872243; BAY-872243; BAY 87-2243; BAY87-2243; BAY-87-2243 |
Protocol | In Vitro | BAY 87-2243 inhibits luciferase activity with a calculated IC50 value of ~0.7 nM. Hypoxic induction of the HIF target gene CA9 on protein level in HCT116luc cells is inhibited by BAY 87-2243 with an IC50 value of ~2 nM. BAY 87-2243 inhibits mitochondrial oxygen consumption measured by using the oxygen sensitive fluorescence dye LUX-MitoXpress with an IC50 value of ~10 nM. |
---|---|---|
In Vivo | Nude mice are inoculated with H460 cells subcutaneously and after tumors have been established, animals are treated with BAY 87-2243 (0.5, 1, 2, and 4 mg/kg) for 3 weeks by daily oral gavage. BAY 87-2243 reduced tumor weight dose dependently in line with a dose-dependent reduction of the mRNA expression levels of the HIF-1 target genes CA9, ANGPTL4, and EGLN3, whereas the mRNA expression levels of hypoxia-insensitive EGLN2 gene and of HIF-1α itself are not affected by compound treatment in vivo. |
These protocols are for reference only. InvivoChem does not
independently validate these methods.
Solvent volume to be added | Mass (the weight of a compound) | |||
---|---|---|---|---|
Mother liquor concentration | 1mg | 5mg | 10mg | 20mg |
1mM | 1.9028 mL | 9.5142 mL | 19.0284 mL | 38.0568 mL |
5mM | 0.3806 mL | 1.9028 mL | 3.8057 mL | 7.6114 mL |
10mM | 0.1903 mL | 0.9514 mL | 1.9028 mL | 3.8057 mL |
20mM | 0.0951 mL | 0.4757 mL | 0.9514 mL | 1.9028 mL |
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start)
×
Volume(start)
=
Concentration(final)
×
Volume(final)
This equation is commonly abbreviated as: C1 V1 = C2 V2
Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg
Average weight of animals g
Dosing volume per animal µL
Number of animals
Step Two: Enter the in vivo formulation
%DMSO
+
%
+
%Tween 80
+
%ddH2O
Calculation Results:
Working concentration:
mg/ml;
Method for preparing DMSO master liquid:
mg
drug pre-dissolved in
µL
DMSO(Master liquid concentration
mg/mL)
,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation:
Take
µL
DMSO master liquid, next add
µL
PEG300, mix and clarify, next add
µL
Tween 80,mix and clarify, next add
µL
ddH2O,mix and clarify.
Note:
- (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
- (2) Be sure to add the solvent(s) in order.