Home > Signaling Pathways>DNA Damage>PARP >Talazoparib racemic
Talazoparib racemic

This product is for research use only, not for human use. We do not sell to patients.

Talazoparib racemic
For small sizes, please check our retail website as below: www.invivochem.com
Size Price Stock
5mg$1353-6 Days
10mg$2353-6 Days
25mg$4093-6 Days
50mg$6103-6 Days
100mg$9203-6 Days
250mg$16003-6 Days

Cat #: V3866 CAS #: 1207456-00-5 Purity ≥ 98%

Description: Talazoparib racemic (formerly known as BMN 673 and MDV 3800), the racemic mixture of talazoparib, is a potent PARP1/2 [poly(ADP-ribose) polymerase] inhibitor with favorable pharmacokinetic properties.

Top Publications Citing Invivochem Products
Publications Citing InvivoChem Products

Product Promise

Promise
Molecular Weight (MW)380.35
Molecular FormulaC19H14F2N6O
CAS No.1207456-00-5
Storage-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility In VitroDMSO: 38 mg/mL (99.9 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility In VivoO=C1NN=C2C3=C1C=C(F)C=C3N[C@H](C4=CC=C(F)C=C4)[C@H]2C5=NC=NN5C
SynonymsTalazoparib (8R,9S); (8R,9S)-LT-673; BMN 673 racemic; BMN673; BMN-673; LT673; LT 673; LT-673; MDV-3800; MDV 3800; MDV3800; trade name: Talzenna
ProtocolIn VitroIn vitro activity: BMN-673 selectively binds to PARP and prevents PARP-mediated DNA repair of single strand DNA breaks via the base-excision repair pathway. This enhances the accumulation of DNA strand breaks, promotes genomic instability and eventually leads to apoptosis. BMN 673 selectively kills cancer cells with BRCA-1 or BRCA-2 mutations. BMN 673 demonstrates single-agent cytotoxicityin BRCA-1 mutant (MX-1, IC50 = 0.3 nM) and BRCA-2 mutant cells (Capan-1, IC50 = 5 nM). In contrast, in MRC-5 normal human fibroblastand other tumor cell lines with wild-type BRCA-1 and BRCA-2 genes, IC50 of BMN 673 ranges between 90 nM and 1.9 μM. In cultured human cancer cells, BMN 673 also significantly enhances the cytotoxic efficacy of both Temozolomide and SN-38. Off-target molecular screening did not identify significant non-specific activity for this class of PARP inhibitors. Kinase Assay: For PARP inhibitor Ki determination, enzyme assays were conducted in 96-well FlashPlate with 0.5 U PARP1 enzyme , 0.25x activated DNA, 0.2 mCi [3H] NAD, and 5 mmol/L cold NAD(Sigma) in a final volume of 50 mL reaction buffer containing 10% glycerol (v/v), 25 mmol/L HEPES, 12.5 mmol/L MgCl2, 50 mmol/L KCl, 1 mmol/L dithiothreitol (DTT), and 0.01% NP-40 (v/v), pH 7.6. Reactions were initiated by adding NAD to the PARP reaction mixture with or without inhibitors and incubated for 1 minute at room temperature. Fifty microliter of ice-cold 20% trichloroacetic acid (TCA) was then added to each well to stop the reaction. The plate was sealed and shaken for a further 120 minutes at room temperature, followed by centrifugation. Radioactive signal bound to the FlashPlate was determined using Top-Count. PARP1 Km was determined using Michaelis–Menten equation from various substrate concentrations (1–100 mmol/L NAD). Compound Ki was calculated from enzyme inhibition curve according to the formula: Ki ¼ IC50/[1þ (substrate)/Km]. Km for PARP2 enzyme and compound Ki were determined with the same assay protocol except 30 ng PARP2, 0.25x activated DNA, 0.2 mCi [3H] NAD, and 20 mmol/L cold NAD were used in the reaction for 30 minutes at room temperature. Cell Assay: BMN 673 exhibits a potent inhibitory effect on a panel of 11 SCLC cell lines (IC50=1.7 to 15 nmol/L), which are all within clinically achievable ranges. In addition, sensitivity to BMN673 correlates to DNA repair protein expression and PI3K pathway activity.
In VivoIn rat pharmacokinetic studies, BMN 673 displays >50% oralbioavailability and pharmacokinetic properties that enable singledaily dosing. In MX-1 xenograft tumor model studies, daily oral dosingof BMN 673 significantly enhances the antitumor effects ofcytotoxic therapies in a dose-dependent manner.
Animal modelNude mice bearing established subcutaneous MX-1 tumor xenografts.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Preparing Stock Solutions
Solvent volume to be added Mass (the weight of a compound)
Mother liquor concentration 1mg5mg10mg20mg
1mM2.6292 mL13.1458 mL26.2916 mL52.5831 mL
5mM0.5258 mL2.6292 mL5.2583 mL10.5166 mL
10mM0.2629 mL1.3146 mL2.6292 mL5.2583 mL
20mM0.1315 mL0.6573 mL1.3146 mL2.6292 mL
Quality Control Documentation
The molarity calculator equation
Mass(g) = Concentration(mol/L) × Volume(L) × Molecular Weight(g/mol)
Mass
=
Concentration
×
Volume
×
Molecular Weight*
The dilution calculator equation
Concentration(start) × Volume(start) = Concentration(final) × Volume(final)

This equation is commonly abbreviated as: C1 V1 = C2 V2

Concentration(start)
C1
×
Volume(start)
V1
=
Concentration(final)
C2
×
Volume(final)
V2
Step One: Enter information below
Dosage mg/kg Average weight of animals g Dosing volume per animal µL Number of animals
Step Two: Enter the in vivo formulation
%DMSO + % + %Tween 80 + %ddH2O

Calculation Results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in µL DMSO(Master liquid concentration mg/mL) ,Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation: Take µL DMSO master liquid, next add µL PEG300, mix and clarify, next add µL Tween 80,mix and clarify, next add µL ddH2O,mix and clarify.
Note:
  • (1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
  • (2) Be sure to add the solvent(s) in order.